Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The radical centre of the circles x2+y2-16x+60=0 , x2+y2-12x+27=0 and x2+y2-12y+8=0 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The radical centre of the circles $ {{x}^{2}}+{{y}^{2}}-16x+60=0 $ , $ {{x}^{2}}+{{y}^{2}}-12x+27=0 $ and $ {{x}^{2}}+{{y}^{2}}-12y+8=0 $ is
Jharkhand CECE
Jharkhand CECE 2008
A
$ \left( 13,\,\,\frac{33}{4} \right) $
B
$ \left( \frac{33}{4},\,\,-13 \right) $
C
$ \left( \frac{33}{4},\,\,13 \right) $
D
None of these
Solution:
Given, equation of the circles are
$
\begin{array}{l}
S_{1} \equiv x^{2}+y^{2}-16 x+60=0 \ldots \text { (i) } \\
S_{2} \equiv x^{2}+y^{2}-12 x+27=0 \ldots \text { (ii) And } \\
S_{3} \equiv x^{2}+y^{2}-12 y+8=0 \ldots \text { (iii) The radical axis }
\end{array}
$
$S_{3}=x^{2}+y^{2}-12 y+8=0$... (iii) The radical axis of circles (i) and (ii) is $S_{1}-S_{2}=0 \Rightarrow $
$\left(x^{2}+y^{2}-16 x+60\right)-\left(x^{2}+y^{2}-12 x+27\right)=0$ $\Rightarrow -4 x+33=0 \Rightarrow x=\frac{33}{4} ..$ (iv)
The radical axis of circles (ii) and (iii) is
$S_{2}-S_{3}=0 \Rightarrow $ $\left(x^{2}+y^{2}-12 x+27\right)-\left(x^{2}+y^{2}-12 y+8\right)=0 \Rightarrow $ $-12 x+12 y+19=0$ ? (v) On solving Eqs. (iv) and (v), wef get radical centre
$\left(\frac{33}{4}, \frac{20}{3}\right)$.