Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The radical centre of the circles $x^{2}+y^{2}-16 x+60=0$,
$x^{2}+y^{2}-12 x+27=0, x^{2}+y^{2}-12 y+8=0$ is

Conic Sections

Solution:

$S_{1} \equiv x^{2}+y^{2}-16 x+60=0 \,\,\,\,\,\,\,\,\,\,...(i)$
$S_{2} \equiv x^{2}+y^{2}-12 x+27=0\,\,\,\,\,\,\,\,\,\,...(ii)$
$S_{3} \equiv x^{2}+y^{2}-12 y+8=0\,\,\,\,\,\,\,\,\,\,...(iii)$
The radical axis of circle (i) and circle (ii) is
$S_{1}-S_{2}=0 \Rightarrow -4 x+33=0 \,\,\,\,\,\,\,\,\,... (iv)$
The radical axis of circle (ii) and circle (iii) is
$S_{2}-S_{3}=0 \Rightarrow -12+12 y+19=0 \,\,\,\,\,\,\ldots( v )$
Solving (iv) and (v), we get the radical centre $\left(\frac{33}{4}, \frac{20}{3}\right)$