Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The quadratic equation whose roots are the arithmetic mean and the harmonic mean of the roots of the equation $x^{2}+7x-1=0$ is

NTA AbhyasNTA Abhyas 2022

Solution:

Let, $\alpha ,\beta $ are the roots of the equation $x^{2}+7x-1=0$
$\Rightarrow \alpha +\beta =-7,\alpha \beta =-1$
$\Rightarrow A=\frac{\alpha + \beta }{2}=-\frac{7}{2}$
and $H=\frac{2 \alpha \beta }{\alpha + \beta }=\frac{2 \left(- 1\right)}{\left(- 7\right)}=\frac{2}{7}.$
Now, equation whose roots are $A$ and $H$ is
$x^{2}-\left(A + H\right)x+AH=0\Rightarrow x^{2}-x\left(- \frac{7}{2} + \frac{2}{7}\right)+\left(- \frac{7}{2}\right)\frac{2}{7}=0$
$\Rightarrow x^{2}+\frac{45}{14}x-1=0\Rightarrow 14x^{2}+45x-14=0$