Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The projection of the vector $ 2i+a\text{ }j- \hat{k} $ on the vector $ \hat {i}-2j+ \hat {k} $ is $ \frac{-5}{\sqrt{6}} $ . Then, the value of $a$ is equal to

KEAMKEAM 2011Vector Algebra

Solution:

Let $ a=2i+aj-k $ and $ b=i-2j+k $ the projection of a on b is
$=\frac{a.b}{|b|} $ $ \because $ $ \frac{-5}{\sqrt{6}}=\frac{(2i+aj-k).(i-2j+k)}{\sqrt{1+4+1}} $
$ \Rightarrow $ $ \frac{-5}{\sqrt{6}}=\frac{2-2a-1}{\sqrt{6}} $
$ \Rightarrow $ $ -2a+1=-5 $
$ \Rightarrow $ $ 2a=6 $
$ \Rightarrow $ $ a=3 $