Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The probability distribution of a random variable is given below
$X=x$ 0 1 2 3 4 5 6 7
$P(X=x)$ 0 K 2k 2K 3K $K^{2}$ $2K^{2}$ $7K^{2}+K$

Then, $P(0 < x < 5)$ is equal to

EAMCETEAMCET 2015

Solution:

We know that, $\Sigma P(X)=1$
$\Rightarrow 0+K+2 K+2 K+3 K+K^{2}+2 K^{2}+7 K^{2}+K=1$
$\Rightarrow 9 K+10 K^{2}=1$
$\Rightarrow 10 K^{2}+9 K-1=0$
$\Rightarrow 10 K^{2}+10 K-K-1=0$
$\Rightarrow 10 K(K+1)-1(K+1)=0$
$\Rightarrow (K+1)(10 K-1)=0$
$\therefore K=-1, \frac{1}{10}$
But $K > 0$ as probability cannot be negative.
$ \therefore K=\frac{1}{10} $
$ P(0 < x < 5)=P(X=1)+P(X=2) $
$+P(X=3)+P(X=4) $
$=K+2 K+2 K+3 K=8 K$
$=\frac{8}{10} [\because K=\frac{1}{10}] $