Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The principal value of $\sin^{-1} \left(\sin \frac{5\pi}{3}\right) $ is :

Inverse Trigonometric Functions

Solution:

Let $\theta = \sin^{-1} \left[\sin \frac{5\pi}{3} \right]$
$ \Rightarrow \sin\theta = \sin \frac{5\pi}{3} = \sin\left[2\pi - \frac{\pi}{3}\right] $
$\Rightarrow \sin\theta = - \sin \frac{\pi}{3} = \sin\left(\frac{-\pi}{3}\right)$
$ \left(\because \sin\left(-\theta\right) = -\sin\theta\right)$
Therefore, principal value of $ \sin^{-1} \left[\sin \frac{5 \pi}{3}\right] $ is $\frac{- \pi}{3}$ , as principal value of $ \sin^{-1} x$ lies between $ \frac{- \pi}{2}$ and $ \frac{\pi}{2} $