Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The pressure required to stop the increase in volume of a copper block when it is heated from $ 50{}^\circ C $ to $ 70{}^\circ C $ . Coefficient of linear expansion of copper is $ 8\times {{10}^{-6}}/{}^\circ C $ and bulk modulus of elasticity $ =3.6\times {{10}^{11}}N/{{m}^{2}}, $ is:

KEAMKEAM 2000

Solution:

$ B=\frac{Change\text{ }in\text{ }pressure}{Volume\text{ }strain}=\frac{p}{\gamma ({{t}_{2}}-{{t}_{1}})} $ $ \therefore $ $ p={{B}_{\gamma }}({{t}_{2}}-{{t}_{1}}) $ Given, $ B=3.6\times {{10}^{11}}N/{{m}^{2}}, $ $ \gamma =3\alpha =3\times 8\times {{10}^{-6}}=24\times {{10}^{-6}}/{}^\circ C $ $ {{t}_{2}}-{{t}_{1}}=70-50=20{}^\circ C $ $ \therefore $ $ p=(3.6\times {{10}^{11}})(24\times {{10}^{-6}})(20) $ $ =1.728\times {{10}^{8}}N/{{m}^{2}} $