Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The positive roots of the equation $(\sqrt{200}+\sqrt{56}) x^2+10 x-2(\sqrt{50}-\sqrt{14})=0$

Complex Numbers and Quadratic Equations

Solution:

$2(\sqrt{50}+\sqrt{14}) x^2+10 x-2(\sqrt{50}-\sqrt{14})=0$
$\Rightarrow x =\frac{-10 \pm \sqrt{100+16 \cdot 36}}{4(\sqrt{50}+\sqrt{14})}=\frac{-5 \pm \sqrt{25+144}}{2(\sqrt{50}+\sqrt{14})}=\frac{-5 \pm 13}{2(\sqrt{50}+\sqrt{14})}$
Positive root
$x=\frac{4(\sqrt{50}-\sqrt{14})}{36}=\frac{\sqrt{50}-\sqrt{14}}{9}=\frac{5 \sqrt{2}-\sqrt{14}}{9}$