Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The positive integer n for which displaystyle lim x arrow 0 (( cos x-1)( cos x-ex)/xn) exists and is finite, is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The positive integer $n$ for which $\displaystyle\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}$ exists and is finite, is
AP EAMCET
AP EAMCET 2019
A
4
B
3
C
2
D
1
Solution:
Let
$\displaystyle\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}=K$
$\Rightarrow \displaystyle \lim _{x \rightarrow 0} \frac{(1-\cos x)\left(e^{x}-1-\cos x+1\right)}{x^{n}}=K$
$\Rightarrow \displaystyle\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{x^{n-1}}\left(\frac{e^{x}-1}{x}+\frac{1-\cos x}{x}\right)=K$
$\Rightarrow \displaystyle\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{x^{n-1}}\left(\frac{e^{x}-1}{x}+\frac{2 \sin ^{2} \frac{x}{2}}{x}\right)=K$
$\Rightarrow \displaystyle \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}\left(\frac{2 \sin ^{2} \frac{x}{2}}{x^{n-1}}\right)+\displaystyle\lim _{x \rightarrow 0} \frac{4 \sin ^{4} \frac{x}{2}}{x^{n}}=K$
$\Rightarrow \displaystyle\lim _{x \rightarrow 0}\left(\frac{2 \sin ^{2} \frac{x}{2}}{x^{n-1}}\right)+\lim _{x \rightarrow 0} \frac{4 \sin ^{2} \frac{x}{2}}{x^{n}}=K$
$\left[\because \displaystyle\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right]$
$=\displaystyle\lim _{x \rightarrow 0} \frac{1}{2\left(x^{n-3}\right)}+\displaystyle\lim _{x \rightarrow 0} \frac{1}{4\left(x^{n-4}\right)}=K$
To exists and finite put $n-3=0 $
$\Rightarrow n=3$