Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The position vector of the particle is $r\left(t\right)=acos \omega t\hat{i}+asin⁡\omega t\hat{j}$ , where $a$ and $\omega $ are real constants of suitable dimensions. The acceleration is

NTA AbhyasNTA Abhyas 2022

Solution:

Given that, $r(t)=a \cos \omega t \hat{i}+a \sin \omega t \hat{j}$
$\because \vec{v}=\frac{d r(t)}{d t}=-a \omega \sin \omega t \hat{i}+a \omega \cos \omega t \hat{i} j$
$\vec{a}=\frac{d \vec{v}}{d t}=-a \omega^2 \cos \omega t \hat{i}-a \omega^2 \cos \omega t \hat{j}$
$\vec{a} \cdot \vec{v}=a^2 \omega^3 \sin \omega t \cos \omega t-a^2 \omega^3 \sin \omega t \cos \omega t$
$\Rightarrow \vec{a} \cdot \vec{v}=0$
Above result implies that acceleration is perpendicular to velocity.