Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The position vector of a particle is $ \vec{r} = (a \, \cos \, \omega t) \hat{i} + (a \sin \omega t) \hat{j}$. The velocity of the particle is

AIPMTAIPMT 1995Motion in a Plane

Solution:

Position vector of the particle
$(r)=(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}$
velocity vector
$\vec{v}= \frac{d \vec{r}}{d t}=(-a \omega \sin \omega t) \hat{i}+(a \omega \cos \omega t) \hat{j} $
$=\omega[(-a \sin \omega t) \hat{i}+(a \cos \omega t) \hat{j}] $
$\vec{v} \cdot \vec{r} =\omega[(-a \sin \omega t) \hat{i}+(a \cos \omega t) \hat{j})] \cdot[(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j})]$
$=\omega\left[-a^{2} \sin \omega t \cos \omega t+a^{2} \cos \omega t \sin \omega t\right]=0$
Therefore velocity vector is perpendicular to the displacement vector.