Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The position of a particle moving along $x$ -axis is given by $\mathrm{x}=\mathrm{x}_0 \cos ^2(\omega \mathrm{t})$. . Its speed when it is at mean position is

NTA AbhyasNTA Abhyas 2020Oscillations

Solution:

$x=x_{0}cos^{2}ωt$
$\therefore x=x_{0}\left(\frac{cos 2 ωt + 1}{2}\right)$
$\Rightarrow x=\frac{x_{0}}{2}+\frac{x_{0}}{2}cos2ωt$
$\therefore \frac{dx}{dt}=-\frac{x_{0}}{2}sin2ωt \, . \, 2\omega $
$\Rightarrow \frac{dx}{dt}=-ωx_{0}sin2ωt$
So, the speed at mean position is $v_{0}=ωx_{0}$