Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The polar of the circle x2+y2+2λ x+2μ y+c=0 with respect to origin will touch x2+y2=r2, if
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The polar of the circle $ {{x}^{2}}+{{y}^{2}}+2\lambda x+2\mu y+c=0 $ with respect to origin will touch $ {{x}^{2}}+{{y}^{2}}={{r}^{2}}, $ if
Rajasthan PET
Rajasthan PET 2004
A
$ {{r}^{2}}={{c}^{2}}({{\lambda }^{2}}+{{\mu }^{2}}) $
B
$ {{c}^{2}}={{r}^{2}}({{\lambda }^{2}}+{{\mu }^{2}}) $
C
$ c=r({{\lambda }^{2}}+{{\mu }^{2}}) $
D
$ r=c({{\lambda }^{2}}+{{\mu }^{2}}) $
Solution:
The equation of polar of the circle
$ {{x}^{2}}+{{y}^{2}}+2\lambda x+2\mu y+c=0 $
with respect to origin is
$ x.0+y.0+\lambda (x+0)+\mu (y+0)+c=0 $
$ \Rightarrow $ $ \lambda x+\mu y+c=0 $
$ \Rightarrow $ $ y=-\frac{\lambda }{\mu }x-\frac{c}{\mu } $
If $ y=mx+c $ touches the circle $ {{x}^{2}}+{{y}^{2}}={{r}^{2}}, $ then $ c=\pm \sqrt{1+{{m}^{2}}} $
Hence, $ y=-\frac{\lambda }{\mu }x-\frac{c}{\mu } $ will touch the circle $ {{x}^{2}}+{{y}^{2}}={{r}^{2}} $
if $ -\frac{c}{\mu }=\pm r\sqrt{1+{{\left( -\frac{\lambda }{\mu } \right)}^{2}}} $
$ \Rightarrow $ $ \frac{{{c}^{2}}}{{{\mu }^{2}}}={{r}^{2}}\left( \frac{{{\mu }^{2}}+{{\lambda }^{2}}}{{{\mu }^{2}}} \right) $
$ \Rightarrow $ $ {{c}^{2}}={{r}^{2}}({{\mu }^{2}}+{{\lambda }^{2}}) $