Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The points $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ form

Introduction to Three Dimensional Geometry

Solution:

Let $P (0,7,10),\, Q (-1,6,6)$ and $R (-4,9,6)$ be the vertices of a triangle
Here, $P Q=\sqrt{1+1+16}=3 \sqrt{2}$
$Q R=\sqrt{9+9+0}=3 \sqrt{2}$
$P R= \sqrt{16+4+16}=6$
Now, $P Q^{2}+Q R^{2}=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}=36=( PR )^{2}$
Therefore, $\Delta PQR$ is a right angled triangle at $Q$. Also, $OQ$ $=$ OR. Hence, $\Delta PQR$ is a right angled isosceles triangle.