Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The point in the xy-plane which is equidistant from the points (5,0,6), (0, -3, 2) and (4, 5, 0) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The point in the $xy$-plane which is equidistant from the points $(5,0,6)$, $(0, -3, 2)$ and $(4, 5, 0)$ is
Introduction to Three Dimensional Geometry
A
$(1,2,3)$
8%
B
$(-3 ,1 3 ,0 )$
11%
C
$(13, -2, 0)$
32%
D
None of these
48%
Solution:
Any point in $xy$-plane is of the form $(x, y, 0)$. Let $P(x, y, 0)$ is equidistant from $A(5, 0, 6)$, $B(0, -3, 2)$ and $C(4, 5, 0)$.
$\therefore $ $PA = PB$
$\Rightarrow PA^{2} = PB^{2}$
$\Rightarrow \left(x- 5\right)^{2} + \left(y - 0\right)^{2} + \left(0 - 6\right)^{2}$
$= \left(x- 0\right)^{2} + \left(y + 3\right)^{2} + \left(0 - 2\right)^{2}$
$\Rightarrow x^{2} + 25 - 10x + y^{2} + 36$
$= x^{2}+y^{2} + 9 + 6y + 4$
$\Rightarrow 5x + 3y = 24 \quad\ldots\left(i\right)$
Also, $PB = PC$
$\Rightarrow PB^{2} = PC^{2}$
$\Rightarrow \left(x - 0\right)^{2} + \left(y + 3\right)^{2} + \left(0 - 2\right)^{2}$
$= \left(x - 4\right)^{2} + \left(y - 5\right)^{2} + \left(0 - 0\right)^{2}$
$\Rightarrow x^{2}+y^{2} + 9 + 6y + 4$
$= x^{2}+ 1 6 -8 x + y^{2} + 25 - 10y$
$\Rightarrow 2x + 4y = 7\quad\ldots\left(ii\right)$
Solving $\left(i\right)$ and $\left(ii\right)$, we get
$x = \frac{75}{14}$, $y = \frac{-13}{14}$
$\therefore $ Coordinates of $P = \left(\frac{75}{14}, \frac{-13}{14}, 0\right)$.