Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The plane $3 x+4 y+6 z+7=0$ is rotated about the line $r =(\hat{ i }+2 \hat{ j }-3 \hat{ k })+t(2 \hat{ i }-3 \hat{ j }+\hat{ k })$ until the plane passes through origin. The equation of the plane in the new position is

AP EAMCETAP EAMCET 2019

Solution:

Equation of plane passes through the origin and containing the line
$r =(\hat{ i }+2 \hat{ j }-3 \hat{ k })+t(2 \hat{ i }-3 \hat{ j }+\hat{ k })$ is
$( r -0) \cdot[(\hat{ i }+2 \hat{ j }-3 \hat{ k }) \times(2 \hat{ i }-3 \hat{ j }+\hat{ k })]=0$
$\Rightarrow r \cdot[\hat{ i }(2-9)-\hat{ j }(1+6)+\hat{ k }(-3-4)]=0$
$\Rightarrow r \cdot(-7 \hat{ i }-7 \hat{ j }-7 \hat{ k })=0$
$\Rightarrow r \cdot(\hat{ i }+\hat{ j }+\hat{ k })=0$
or $x+y+z=0$