Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The physical quantity which has dimensional formula as that of $ \frac{\text{Energy}}{\text{Mass x length}} $ is:

EAMCETEAMCET 2000

Solution:

$ \frac{Energy}{Mass\times length}=\frac{[M{{L}^{2}}{{T}^{-2}}]}{[M][L]}=[L{{T}^{-2}}] $ Force (F) = Mass(m) $ \times $ acceleration $ \therefore $ $ [F]=[M][L{{T}^{-1}}] $ $ =[ML{{T}^{-1}}] $ Power (P) = Force (F) $ \times $ velocity (v) $ \therefore $ $ [P]=[ML{{T}^{-2}}][L{{T}^{-1}}] $ $ =[M{{L}^{2}}{{T}^{-3}}] $ Pressure (p) $ \text{(P) = }\frac{\text{Force (F)}}{\text{Area (A)}} $ $ \therefore $ $ [p]=\frac{[ML{{T}^{-2}}]}{[{{L}^{2}}]}=[M{{L}^{-1}}{{T}^{-2}}] $ Acceleration $ \text{(a) =}\frac{\text{Forece }\!\![\!\!\text{ F }\!\!]\!\!\text{ }}{\text{Mass(m)}} $ $ \Rightarrow $ $ [a]=\frac{[ML{{T}^{-2}}]}{[m]}=[L{{T}^{-2}}] $ So, choice is correct.