Q. The phase difference between current and voltage in an $AC$ circuit is $\pi /4$ radian. If the frequency of $AC$ is $50Hz$ , then the phase difference is equivalent to the time difference:
NTA AbhyasNTA Abhyas 2022
Solution:
AC frequency $f=50Hz$
Phase difference $\Delta \phi=\frac{\pi }{4}$
The relation between phase difference and time difference is given by
$\frac{\Delta \phi}{2 \pi }=\frac{\Delta t}{T}$
$\Rightarrow \Delta t=\frac{\Delta \phi}{f \left(2 \pi \right)}=\frac{\pi / 4}{50 \left(2 \pi \right)}$
$\Rightarrow \Delta t=\frac{1}{400}=2.5ms$
Phase difference $\Delta \phi=\frac{\pi }{4}$
The relation between phase difference and time difference is given by
$\frac{\Delta \phi}{2 \pi }=\frac{\Delta t}{T}$
$\Rightarrow \Delta t=\frac{\Delta \phi}{f \left(2 \pi \right)}=\frac{\pi / 4}{50 \left(2 \pi \right)}$
$\Rightarrow \Delta t=\frac{1}{400}=2.5ms$