Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
The pH of a saturated solution of a metal hydroxide of formula X(OH)2 is 12.0 at 298 K. What is the solubility product of the metal hydroxide at 298 K (in mol3 L-3)?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The $pH$ of a saturated solution of a metal hydroxide of formula $X(OH)_2$ is $12.0$ at $298\, K$. What is the solubility product of the metal hydroxide at $298 \,K$ (in $mol^3 \, L^{-3}$)?
KEAM
KEAM 2014
Equilibrium
A
$ 2 \times 10^{-6}$
0%
B
$ 1 \times 10^{-7}$
50%
C
$ 5 \times 10^{- 5}$
0%
D
$ 2 \times 10^{- 5}$
0%
E
$ 5 \times 10^{-7}$
0%
Solution:
Given, $pH =12$
$\therefore \left[ H ^{+}\right]=1 \times 10^{- pH }=1 \times 10^{-12} $
We know that
$\left[ H ^{+}\right]\left[ OH ^{-}\right] =K_{w}=1 \times 10^{-14}$
$\therefore \left[ OH ^{-}\right] =\frac{1 \times 10^{-14}}{\left[ H ^{+}\right]}$
$=\frac{1 \times 10^{-14}}{1 \times 10^{-12}}=1 \times 10^{-2}$
$X( OH )_{2}$ dissolves as
$X ( OH )_{2} \longrightarrow \underset{X}{X ^{2+}}+ \underset{1\times 10^-2}{2OH ^{-}}$
$\therefore X^{2+}=\frac{\left[ OH ^{-}\right]}{2}=\frac{1 \times 10^{-2}}{2}=5 \times 10^{-3}$
$K_{ sp }=\left[X^{2+}\right]\left[2 OH ^{-}\right]^{2}$
$=\left(5 \times 10^{-3}\right)\left(1 \times 10^{-2}\right)^{2}$
$=\left(5 \times 10^{-3}\right)\left(1 \times 10^{-4}\right)$
$=5 \times 10^{-7}\, mol ^{3}\, L ^{-3}$