Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The period of SHM of a particle is 12 s. The phase difference between the positions at t=3 s and t=4 s will be:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The period of SHM of a particle is $12 \,s$. The phase difference between the positions at $ t=3\,s $ and $ t=4\,s $ will be:
Jharkhand CECE
Jharkhand CECE 2004
Oscillations
A
$ \pi /4 $
6%
B
$ 3\pi /5 $
10%
C
$ \pi /6 $
79%
D
$ \pi /2 $
5%
Solution:
We know simple harmonic motion has equation
$\Rightarrow$ $y=a \sin \omega t$
$(a\to$ amplitude; ($\omega t) \rightarrow$ phase)
Time period, $T=12\, s$
So at $t=3 \,s $
$\Rightarrow$ phase $=\omega \times 3=\frac{2 \pi}{T} \times 3$
$=\frac{6 \pi}{12}=\frac{\pi}{2}$
$ \Rightarrow \phi_{1}$
[We know $ \omega=2 \pi / T]$
So at $t=4 \,s $
$\Rightarrow$ phase $=\omega \times 4$
$=\frac{2 \pi}{T} \times 4=\frac{8 \pi}{12}$
$\Rightarrow$ phase $=\frac{2 \pi}{3} \Rightarrow \phi_{2}$
So phase difference $=\phi_{2}-\phi_{1}=\frac{2 \pi}{3}-\frac{\pi}{2}$
$\Rightarrow$ phase difference $=\frac{4 \pi-3 \pi}{6}=\frac{\pi}{6}$