Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The path difference between the two waves $y_{1}=a_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $y_{2}=a_{2} \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right)$ is

ManipalManipal 2009Waves

Solution:

$y_{1} =a_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and
$y_{2} =a_{2} \cdot \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right)$
$=a_{2} \sin \left(\omega t-\frac{2 \pi x}{\lambda}+\phi+\frac{\pi}{2}\right)$
So, phase difference $=\phi+\frac{\pi}{2}$
and path difference $\Delta=\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)$