Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The parametric equations of the circle $ {{x}^{2}}+{{y}^{2}}+x+\sqrt{3}y=0 $ are

KEAMKEAM 2011

Solution:

Equation of circle $ {{x}^{2}}+{{y}^{2}}+x+\sqrt{3}y=0 $
$ \Rightarrow $ $ ({{x}^{2}}+x)+({{y}^{2}}+\sqrt{3}y)=0 $
$ \Rightarrow $ $ \left( {{x}^{2}}+x+\frac{1}{4} \right)+\left( {{y}^{2}}+\sqrt{3}y+\frac{3}{4} \right)=\frac{1}{4}+\frac{3}{4} $
$ \Rightarrow $ $ {{\left( x+\frac{1}{2} \right)}^{2}}+{{\left( y+\frac{\sqrt{3}}{2} \right)}^{2}}=1 $
$ \Rightarrow $ $ {{\left( x-\left( \frac{-1}{2} \right) \right)}^{2}}+{{\left( y-\left( \frac{-\sqrt{3}}{2} \right) \right)}^{2}}=1 $ Let $ x+\frac{1}{2}\cos \theta \Rightarrow x=-\frac{1}{2}+\cos \theta $ and $ y+\frac{\sqrt{3}}{2}=\sin \theta \Rightarrow y=\frac{-\sqrt{3}}{2}+\sin \theta $
Which are the required parametric coordinates of the given circle.