Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The output current versus time curve of a rectifier is shown in the figure. The average value of output current in this case is :- <img class=img-fluid question-image alt=Question src=https://cdn.tardigrade.in/q/nta/p-fceeaxyobniuzp39.jpg />
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The output current versus time curve of $a$ rectifier is shown in the figure. The average value of output current in this case is :-
NTA Abhyas
NTA Abhyas 2020
A
$0$
B
$\frac{I_{0}}{2}$
C
$\frac{2 I_{0}}{\pi }$
D
$I_{0}$
Solution:
$I_{a v}=\frac{\displaystyle \int _{0}^{T / 2} idt}{\displaystyle \int _{0}^{T / 2} dt}=\frac{\displaystyle \int _{0}^{T / 2} I_{0} sin \left(ωt\right) dt}{T / 2}$
$=\frac{2 I_{0}}{T}\left(\left[\frac{- cosωt}{\omega }\right]\right)_{0}^{T / 2}=\frac{2 I_{0}}{T}\left[- \frac{cos \left(\frac{\omega T}{2}\right)}{\omega } + \frac{cos 0 ^\circ }{\omega }\right]$
$=\frac{2 I_{0}}{\omega T}\left[- cos \pi + cos 0 ^\circ \right]=\frac{2 I_{0}}{2 \pi }\left[1 + 1\right]=\frac{2 I_{0}}{\pi }$