Thank you for reporting, we will resolve it shortly
Q.
The orbital velocity of an artificial satellite in a circular orbit just above the earth's surface is $v$. The orbital velocity of a satellite orbiting at an altitude of half of the radius, is
Given $R_1 = R_e.$
$R_2=R_e+\frac{R_e}{2}=\frac{3}{2}R_e$
The orbital velocity of satellite is
$v_0=\sqrt{\frac{GM_e}{R}}$
$\Rightarrow v_0\propto\sqrt{\frac{1}{R}}$
Hence, $\frac{v_1}{v_2}=\sqrt\frac{R_2}{R_1}$
$=\sqrt\frac{3R_e}{2R_e}=\sqrt{\frac{3}{2}}$
$v_2=\sqrt{\frac{2}{3}}v_1$
$=\sqrt{\frac{2}{3}}v_o$ $(=v_1=v_o)$