Thank you for reporting, we will resolve it shortly
Q.
The number of values of ' $r$ ' satisfying the equation, ${ }^{39} C_{3 r-1}-{ }^{39} C_{r^2}={ }^{39} C_{r^2-1}-{ }^{39} C_{3 r}$ is :
Binomial Theorem
Solution:
${ }^{39} C _{3 r -1}-{ }^{39} C _{ r ^2}={ }^{39} C _{ r ^2-1}-{ }^{39} C _{3 r } $
$\Rightarrow{ }^{39} C _{3 r -1}+{ }^{39} C _{3 r }={ }^{39} C _{ r ^2-1}+{ }^{39} C _{ r ^2}$
${ }^{40} C _{3 r }={ }^{40} C _{ r ^2}$
$r ^2=3 r$ or $ r =0,3$