Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of value of k, for which the system of equation (k+1)x+8y=4y ⇒ kx+(k+3)y=3k-1 has no solution, is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of value of $k$, for which the system of equation $(k+1)x+8y=4y \, \, \Rightarrow \, \, \, kx+(k+3)y=3k-1$ has no solution, is
COMEDK
COMEDK 2013
Determinants
A
infinite
24%
B
1
37%
C
2
23%
D
3
16%
Solution:
Given equations can be written in matrix form $A X = B$
where, $A =\begin {bmatrix}k+1 & 8 \\k & k+3 \end {bmatrix}=0 , X=\bigg[ \frac{x}{y}\bigg] $ and $B=\frac{4k}{3k-1}$
For no solution, $|A| =0$ and $(adj A) B \ne 0 $
Now $ |A| =\begin {bmatrix}k+1 & 8 \\k & k+3 \end {bmatrix}=0 \Rightarrow (k^2+1)(k+3)-8k=0$
$ k^2+4k+3-8k=0$
$\Rightarrow k^2-4k \times 3 =0$
$\Rightarrow (k-1)(k-3)=0 \Rightarrow k=1,k=3$
Now $ adj A =\begin {bmatrix}k+3 & -8 \\-k & k+1 \end {bmatrix}=0 $
Now $ (adj \ A)B=\begin {bmatrix}k+3 & -8 \\-k & k+1 \end {bmatrix}= \begin {bmatrix}4k+3 \\3k+1 \end {bmatrix}=0 $
$ =\begin {bmatrix}(k+3)(4k) & -8(3k-1) \\-4k^2+ & (k+1)(3k-1) \end {bmatrix} $
$ =\begin {bmatrix}4k^2-12k+8 \\-k^2+2k-1 \end {bmatrix}$
Put $k = 1$
$(adj A) B =\begin {bmatrix}4-12+8 \\-1+2-1 \end {bmatrix} =\begin {bmatrix}0 \\ 0 \end {bmatrix} $ not true
Put $k=3$
$(adj A) B = \begin {bmatrix}36-36+8 \\-9+ 6-1 \end {bmatrix}=\begin {bmatrix} 8 \\-4 \end {bmatrix} \ne 0$ true
Hence, required value of $k$ is $3$.
Alternate Solution
Condition for the system of equations has no solution is
$ \frac{a_1}{a_2}=\frac{b_1}{b_2}\ne \frac{c_1}{c_2}$
$\therefore$ Take $ \frac{k+1}{k}=\frac{8}{k+3} \ne \frac{4k}{3k-1} $
Take $ \frac{k+1}{k}=\frac{8}{k+3} \Rightarrow k^2+4k+3=8k$
$\Rightarrow k^2- 4k+3 \Rightarrow (k -1)(k-3) = 0$
$k = 1,3$
If $k - 1$, then $\frac{8}{1+3}\ne \frac{4.1}{2}, $ false
And, if $k =3$, then $\frac{8}{6} \ne \frac{4.3}{9-1} $ true
Therefore, $k=3 $
Hence, only one value of $k$ exist.