Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of the solutions of the equation 52x-1+5x+1=250, is/are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of the solutions of the equation $ {{5}^{2x-1}}+{{5}^{x+1}}=250, $ is/are
J & K CET
J & K CET 2015
Complex Numbers and Quadratic Equations
A
$ 0 $
12%
B
$ 1 $
52%
C
$ 2 $
27%
D
$infinitely \,many$
10%
Solution:
Given equation is $ {{5}^{2x-1}}+{{5}^{x+1}}=250 $
$ \Rightarrow $ $ {{5}^{2x}}{{.5}^{-1}}+{{5}^{x}}.5=250 $
$ \Rightarrow $ $ \frac{{{({{5}^{x}})}^{2}}}{5}+{{5}^{x}}.5=250 $ ?.(i) Let $ {{5}^{x}}=t $ Then Eq. (i) becomes $ \frac{{{t}^{2}}}{5}+t.5=250 $
$ \Rightarrow $ $ {{t}^{2}}+25t=250\times 5 $
$ \Rightarrow $ $ {{t}^{2}}+25t-1250=0 $
$ \therefore $ $ t=\frac{-25\pm \sqrt{{{(25)}^{2}}-4\times 1\times (-1250)}}{2\times 1} $
$ \Rightarrow $ $ t=\frac{-25\pm \sqrt{625+5000}}{2} $
$ \Rightarrow $ $ t=\frac{-25\pm \sqrt{5625}}{2} $
$ \Rightarrow $ $ t=\frac{-25\pm 75}{2} $ On taking $ +ve $ sign, we get $ t={{5}^{x}}=\frac{-25+75}{2}=\frac{50}{2} $
$ \Rightarrow $ $ {{5}^{x}}=25 $
$ \Rightarrow $ $ {{5}^{x}}={{5}^{2}} $
$ \Rightarrow $ $ x=2 $ On taking $ -ve $ sign, we get $ t={{5}^{x}}=\frac{-25-75}{2} $ $ {{5}^{x}}=\frac{-100}{2} $ $ {{5}^{x}}=-50 $ Cannot express in terms of power of 5. Hence number of solution of given equation is 1.