Thank you for reporting, we will resolve it shortly
Q.
The number of solutions of the equation $tan xsinx-1=tanx-sinx,\forall x\in \left[0,2 \pi \right]$ is equal to.
NTA AbhyasNTA Abhyas 2020
Solution:
$tan xsinx-tanx+\left(sin x - 1\right)=0$
$\Rightarrow \left(tan x + 1\right)\left(sin x - 1\right)=0$
$\Rightarrow tan x = - 1$ or $sin x = 1$ (Not possible as $x\neq \frac{\pi }{2}$ )
Hence, for $tanx=-1$ there are $2$ solutions in $\left[0 , 2 \pi \right]$