Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solutions of the equation sin x cos 3x= sin 3x cos 5x in [ 0,(π /2) ] is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of solutions of the equation $ \sin \,x\,\,\cos \,\,3x=\sin \,3x\,\,\cos \,5x $ in $ \left[ 0,\frac{\pi }{2} \right] $ is
J & K CET
J & K CET 2009
Trigonometric Functions
A
$ 3 $
15%
B
$ 4 $
16%
C
$ 5 $
61%
D
$ 6 $
7%
Solution:
Given equation is $ \sin x\cos 3x=\sin 3x\,\cos \,5x $
$ \Rightarrow $ $ 2\sin x\,\cos \,3x-2\sin 3x\,cos5x=0 $
$ \Rightarrow $ $ \sin (3x+x)-\sin (3x-x)-\sin (3x+5x) $
$ +\sin (5x-3x)=0 $
$ \Rightarrow $ $ \sin 4x-\sin 2x-\sin 8x+\sin 2x=0 $
$ \Rightarrow $ $ \sin 4x-\sin 8x=0 $
$ \Rightarrow $ $ 2\cos \left( \frac{4x+8x}{2} \right)\sin \left( \frac{8x-4x}{2} \right)=0 $
$ \Rightarrow $ $ 2\cos \,6x\,\sin \,2x=0 $
$ \Rightarrow $ $ \cos \,\,6x=0 $ or $ \sin \,2x=0 $
$ \Rightarrow $ $ 6x=(2n+1)\frac{\pi }{2} $ or $ x=\frac{n\pi }{2} $
$ \Rightarrow $ $ x=(2n+1)\frac{\pi }{12} $ or $ x=\frac{n\pi }{2} $
$ \Rightarrow $ $ x=0,\,\frac{\pi }{2},\frac{\pi }{12},\frac{3\pi }{12},\frac{5\pi }{12}\in \left[ 0,\frac{\pi }{2} \right] $
$ \therefore $ Number of solutions is 5.