Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of solutions of the equation $\sin\left(\frac{\pi\,x}{2\sqrt{3}}\right)=x^2-2\sqrt{3}x+4$

Trigonometric Functions

Solution:

Since $\,\sin\,\left(\frac{\pi\,x}{2\sqrt{3}}\right) \le1$
$\therefore \, \, \,x^2-2\sqrt{3\,x}+4\,\leq\,1\Rightarrow x^2-2\sqrt{3x}+3\leq\,0$
$\Rightarrow (x-\sqrt{3})^2\,\leq\,0$
$\Rightarrow \, \, \, \,x=\sqrt{3}$ which gives the only solution,