Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of solutions of the equation $cot^{2} sin ⁡ x + 3=1$ in $0,3 \pi $ is equal to

NTA AbhyasNTA Abhyas 2022

Solution:

$cot^{2} sin ⁡ x + 3=1=cot^{2} ⁡ \frac{\pi }{4}$
$\Rightarrow sin x+3=n\pi \pm\frac{\pi }{4}$
Also, $2\leq sin x+3\leq 4$
$\Rightarrow sin x+3=\pi -\frac{\pi }{4},\pi +\frac{\pi }{4}$
$\Rightarrow sin x=\frac{3 \pi }{4}-3$ or $\frac{5 \pi }{4}-3$
Solution