Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solutions of displaystyle∑r=14 cos r x=4 in the interval [0,2 π] is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of solutions of $\displaystyle\sum_{r=1}^{4} \cos r x=4$ in the interval $[0,2 \pi]$ is
KEAM
KEAM 2019
A
1
B
0
C
4
D
3
E
Infinite solutions
Solution:
$\displaystyle\sum_{r=1}^{4} \cos r x=4$
$\cos x+\cos 2 x+\cos 3 x+\cos 4 x=4$
Which is possible only iff,
$\cos x=\cos 2 x=\cos 3 x=\cos 4 x=\cos 5 x=1$
and it satisfied by $x=0$ only
$\therefore $ Number of solutions is $1$ .