Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of real solutions of the equation tan-1 √ x(x+1)+ sin-1 √ x2+x+1= (π/2) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of real solutions of the equation $\tan^{-1} \sqrt {x(x+1)}+\sin^{-1} \sqrt {x^2+x+1}= \frac {\pi}{2}$ is
KCET
KCET 2012
Inverse Trigonometric Functions
A
one
18%
B
four
18%
C
two
40%
D
infinitely many
23%
Solution:
Given,
$\tan^{-1} \sqrt {x(x+1)}+\sin^{-1} \sqrt {x^2+x+1}= \frac {\pi}{2}$
$\Rightarrow cos^{-1} \frac{1}{\sqrt{\left(x^{2}+x\right)^{2}+1}}$
$=\frac{\pi}{2}-sin^{-1}\sqrt{x^{2}+x+1}$
$\Rightarrow cos^{-1} \frac{1}{\sqrt{\left(x^{2}+x\right)^{2}+1}} =cos^{-1} \sqrt{x^{2}+x+1}$
$\Rightarrow \frac{1}{\sqrt{\left(x^{2}+x\right)^{2}+1}}=\sqrt{x^{2}+x+1}$
$\Rightarrow 1=\left(x^{2}+x+1\right)\left[\left(x^{2}+x\right)^{2}+1\right]$
$\Rightarrow \left(x^{2}+x\right)^{3}+\left(x^{2}+x\right)^{2}+\left(x^{2}+x\right)+1=1$
$\Rightarrow \left(x^{2}+x\right)\left[\left(x^{2}+x\right)^{2}+\left(x^{2}+x\right)+1\right]=0$
$\Rightarrow x^{2}+x=0$
$\Rightarrow x= 0, -1$
Hence, both values of x satisfies the given equation.