Q.
The number of real solutions of the equation
$sin^{-1} \left(\sum\limits^{\infty}_{i = 1} x^{i+1}-x \sum\limits^{\infty}_{i = 1} \left(\frac{x}{2}\right)^{i}\right) = \frac{\pi}{2}-cos^{-1} \left(\sum\limits^{\infty}_{i = 1} \left(-\frac{x}{2}\right)^{i} - \sum\limits^{\infty}_{i = 1} \left(-x\right)^{i}\right)$
lying in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ is_____.
(Here, the inverse trigonometric functions $sin^{-1}$ x and $cos^{-1}$ assume values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\left[0, \,\pi\right]$, respectively.)
JEE AdvancedJEE Advanced 2018
Solution: