Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of real solutions of $\left(cot\right)^{- 1} \sqrt{x \left(x + 4\right)}+\left(cos\right)^{- 1} ⁡ \sqrt{x^{2} + 4 x + 1}=\frac{\pi }{2}$ is equal to

NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions

Solution:

Let, $f\left(x\right)=\left(cot\right)^{- 1} \sqrt{x \left(x + 4\right)}+\left(cos\right)^{- 1} ⁡ \sqrt{x^{2} + 4 x + 1}$
For $f\left(x\right)$ to be defined, we have
$x^{2}+4x\geq 0$ and $0\leq x^{2}+4x+1\leq 1$
Which is only possible if
$x^{2}+4x=0\Rightarrow x=0,-4$
Also these values satisfies the equation
$\therefore $ Number of solutions $=2$