Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of real roots of
$(x - 1) (x - 2) (x - 3) (x - 4) = 3$ is

Complex Numbers and Quadratic Equations

Solution:

$ \begin{array}{l} \left(x+\frac{1}{x}\right)^{3}+\left(x+\frac{1}{x}\right)=0 \\ \Rightarrow\left(x+\frac{1}{x}\right)\left[\left(x+\frac{1}{x}\right)^{2}+1\right] \end{array} $
Since, $\left(x+\frac{1}{x}\right)^{2}+1>0$
Therefore, $\left(x+\frac{1}{x}\right)=0$
$ \Rightarrow x ^{2}+1=0 $
Therefore, number of real roots are zero.