Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of real roots of the equationtan $^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{4}$ is :

JEE MainJEE Main 2021Inverse Trigonometric Functions

Solution:

$\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{4}$
For equation to be defined,
$x^{2}+x \geq 0$
$\Rightarrow x^{2}+x+1 \geq 1$
$\therefore $ only possibility that the equation is defined
$x^{2}+x=0 \Rightarrow x=0 ; x=-1$
None of these values satisfy
$\therefore $ No of roots $=0$