Given, equation of circle is
$x^{2}+y^{2}+2 x-2 y+7=0$
Here, radius of the circle
$=\sqrt{(1)+(-1)^{2}-7} $
$=\sqrt{1+1-7}=\sqrt{-5} $
$=$ imaginary
$\therefore $ Given circle is an imaginary circle.
Hence, number of real circles cutting orthogonally the given imaginary circle is zero.