Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of quadratic equations that are unchanged by squaring their roots is

NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations

Solution:

$\alpha +\beta =\alpha ^{2}+\beta ^{2} \, \& \, \alpha \beta =\alpha ^{2}\beta ^{2}\Rightarrow \alpha \beta =0$ or $1$ .
If $\alpha \beta = 0 ,$ then let, $\alpha = 0 \Rightarrow \beta = 0$ or $1$ .
If $\beta = \frac{1}{\alpha }$ ,
$\alpha + \frac{1}{\alpha } = \left(\alpha \right)^{2} + \frac{1}{\left(\alpha \right)^{2}} = \left(\alpha + \frac{1}{\alpha }\right)^{2} - 2$
$\Rightarrow \left(\alpha + \frac{1}{\alpha }\right)^{2} - \left(\alpha + \frac{1}{\alpha }\right) - 2 = 0 \Rightarrow \alpha + \frac{1}{\alpha } = 2$ or $- 1 \Rightarrow \alpha = 1$ or $\omega , \, \omega ^{2}$
Hence number of such equations are four $\left(0 , \, 0\right) , \, \left(0 , \, 1\right) , \, \left(1 , \, 1\right) \, \& \, \left(\omega , \, \left(\omega \right)^{2}\right)$