Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of positive integers satisfying the inequality ${ }^{n+1} C_{n-2}-{ }^{n+1} C_{n-1} \leq 50$ is

ManipalManipal 2016

Solution:

Given, ${ }^{n+1} C_{n-2}-{ }^{n+1} C_{n-1} \leq 50$
$\Rightarrow \frac{(n-1) !}{3 !(n-2) !}-\frac{(n+1) !}{2 !(n-2) !} \leq 50 $
$\Rightarrow \frac{(n+1) !}{3 !}\left[\frac{1}{(n-2) !}-\frac{3}{(n-1) !}\right] \leq 50 $
$\Rightarrow(n+1) !\left(\frac{n-1-3}{(n-1) !}\right) \leq 300$
$\Rightarrow(n+1) n(n-4) \leq 300$
For $n=8$, it satisfy to the above inequality.
But $n=1$ it does not satisfy the above inequality.