Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of local extremum points of the function $f(x)=e^{\sin x}+2 \sin x+x-4$ in $\left(0, \frac{\pi}{2}\right)$ is
[Note: $[ k ]$ and $\operatorname{sgn}( k )$ denotes greatest integer function and signum function of k respectively.]

Application of Derivatives

Solution:

$f^{\prime}(x)=e^{\sin x} \cdot \cos x+2 \cos x+1>0$ for $x \in\left(0, \frac{\pi}{2}\right)$
No local extremum points of the function