Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of integral values of $x$ satisfying the equation $\operatorname{sgn}\left(\left[\frac{15}{1+x^2}\right]\right)=[1+\{2 x\}]$ is
[Note: $\operatorname{sgn}( y ),[ y ]$ and $\{ y \}$ denote signum function, greatest integer function and fractional part function respectively.]

Relations and Functions - Part 2

Solution:

$\operatorname{sgn}\left(\left[\frac{15}{1+x^2}\right]\right)=1$
$1+x^2 \leq 15 \Rightarrow x^2 \leq 14$
$\therefore$ Number of integral values of $x$ are 7