Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of gas molecules striking per second per square metre of the top surface of a table placed in a room at $20^{\circ} C$ and $1$ atmospheric pressure is of the order of $\left(k_{B}=1.4 \times 10^{-23}\, JK ^{-1}\right.$ and the average mass of an air molecule is $5 \times 10^{-27} \,kg$ )

KVPYKVPY 2017Kinetic Theory

Solution:

Using, $v_{\text{rms }}=\sqrt{\frac{3 k T}{m}}$ and
$p=N \times 2 m v_{\text{rms }}$
We have,
$N =\frac{p}{2 m \cdot v_{\text{rms }}}=\frac{p \times \sqrt{m}}{2 m \sqrt{3 k T}}=\frac{(p / 2)}{\sqrt{3 m k T}} $
$=\frac{1.01 \times 10^{5}}{2 \times \sqrt{\left(3 \times 5 \times 10^{-27} \times 1.4 \times 10^{-23} \times 293\right)}} $
$=6.4 \times 10^{27}$