Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of discontinuity of the greatest integer function $f\left(x\right)=\left[x\right], \, x\in \left(- \frac{7}{2} , \, 100\right)$ is equal to

NTA AbhyasNTA Abhyas 2020Continuity and Differentiability

Solution:

Given, $f\left(x\right)=\left[x\right], \, x\in \left(- 3.5 , \, 100\right)$
As we know greatest integer is discontinuous on integer values.
In given interval, the integer values are
$\left(\right.-3, \, -2, \, -1, \, 0, \, \ldots , \, 99\left.\right)$
$\therefore $ Total numbers of integers are 103.