Let $y=20^{301}$
Number of digits $=$ Integral part of $\left(301 \log _{10} 20\right)+1$
$=$ Integral part of $\left[301\left(\log _{10} 10+\log _{10} 2\right)\right]+1$
$=$ Integral part of $[301(1+0.3010)]+1$
$=$ Integral part of $[301 \times 1.3010]+1$
$=$ Integral part of $[391.601]+ 1 =391+1=392$