$\left(49^{2}-4\right)\left(49^{3}-49\right) =\left(49^{2}-2^{2}\right) 49 .\left(49^{2}-1\right)$
$=(49-2)(49+2) 49 .(49-1)(49+1)$
$=47.51 .49 .48 .50$
$=47.48 .49 .50 .51$
It is the product of $5$ consecutive integers and hence it is divisible by $5!$