Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The nucleus of an atom is spherical. The relation between radius of the nucleus and mass number $A$ is given by $1.25\times 10^{- 13}\times A^{\frac{1}{3}} \, cm$ . If radius of atom is one $\mathring{A} $ and the mass number is $64$ , then the fraction of the atomic volume that is occupied by the nucleus is $\left(x\right)\times 10^{- 13}$ . Calculate $20x$ (nearest integer).

NTA AbhyasNTA Abhyas 2022

Solution:

Radius of nucleus $=1.25 \times 10^{- 13}\times A^{\frac{1}{3}}cm$
$=1.25 \times 10^{- 13}\times 64^{\frac{1}{3}}=5\times 10^{- 13}cm$
Radius of atom $=1 \mathring{A}=10^{-8} cm$.
$\frac{\text { Volume of nucleus }}{\text { Volume of atom }}=\frac{\left(\frac{4}{3}\right) \pi \left(5 \times 10^{-13}\right)^{3}}{\left(\frac{4}{3}\right) \pi \left(10^{-8}\right)^{3}} $
$=1.25 \times 10^{-13} .$