Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The normal to the parabola $y^{2}=4x$ at $P\left(9 , 6\right)$ meets the parabola again at $Q.$ If the tangent at $Q$ meets the directrix at $R,$ then the slope of another tangent drawn from point $R$ to this parabola is

NTA AbhyasNTA Abhyas 2020Conic Sections

Solution:

Parameter corresponding to $P$ is $t_{1}=3$
Hence, the parameter corresponding to $Q$ is $t_{2}=-t_{1}-\frac{2}{t_{1}}=-3-\frac{2}{3}=-\frac{11}{3}$
Let, $S\left(t_{3}\right)$ be the point where another tangent from $R$ touches the parabola
Now, if the tangent at $Q\left(t_{2}\right)$ and $S\left(t_{3}\right)$ meet on the directrix at $R$ then $t_{2}t_{3}=-1$
$\Rightarrow t_{3}=\frac{3}{11}$
So the equation of the tangent at $S$ is $\frac{3}{11}y=x+\frac{9}{121}$
Hence, the slope of the tangent at $S$ is $\frac{11}{3}$