Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The normal at the point (at12, 2at1) on the parabola, cuts the parabola again at the point whose parameter is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The normal at the point $(at_1{^2}, 2at_1)$ on the parabola, cuts the parabola again at the point whose parameter is}
VITEEE
VITEEE 2016
A
$t_2 = t_1 - \frac{2}{t_1}$
B
$t_2 = t_1 + \frac{2}{t_1}$
C
$t_2 = - \left( t_1 + \frac{2}{t_1} \right)$
D
None of these
Solution:
Let the normal at $‘t_1’$ cuts the parabola again at the point '$t_2$'. the equation of the normal
at $(at_1{^2}, 2at_1)$ is
$y + t_1x = 2at_1 + at_1{^3}$
Since it passes through the point '$t_2$'
i.e $(at_2{^2}, 2at_2)$
$ \therefore \, \, 2at_{2} + at_{1}t_{2} ^{2} = 2 at_{1} + at_{1} ^{3}$
$ \Rightarrow 2a\left(t_{1} - t_{2} \right) + at_{1}\left(t_{1} ^{2} - t_{2} ^{2}\right) = 0$
$ \Rightarrow 2 + t_{1} \left(t_{1} + t_{2}\right) = 0$
$ \left(\because t_{1} - t_{2 } \ne0\right)$
$ \Rightarrow 2 + t_{1} ^{2} + t_{1 } t_{2} = 0 $
$ \Rightarrow t_{1} t_{2} = -\left(t_{1} ^{2} + 2 \right) $
$\Rightarrow t_{2} = - \left( t_{1} + \frac{2}{t_{1}}\right) $