Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The molar heat capacity of rock salt at low temperatures varies with temperature according to Debye's law; $C=k\frac{T^{3}}{\theta ^{3}}$ where $k=1940 \, J \, mol^{- 1} \, K^{- 1}$ and $\theta =281 \, K$ . The heat required to raise the temperature of $2$ moles of rock salt from $10 \, K$ to $50 \, K$ is

NTA AbhyasNTA Abhyas 2022

Solution:

$dQ=nCdT$ ,
$dQ=nk\frac{T^{3}}{\theta ^{3}} \, dT$
$Q =\frac{ nk }{\theta^{3}} \int_{ T _{1}}^{ T _{2}} T ^{3} dt =\frac{ nk }{\theta^{3}}\left(\frac{ T _{2}^{4}- T _{1}^{4}}{4}\right)$
$=\frac{2 \times 1940\left(50^{4}-10^{4}\right)}{(281)^{3} \times 4}=272.79 J$
$Q=273 \, J$